3.1.74 \(\int (c+d x)^m \sin (a+b x) \, dx\) [74]

Optimal. Leaf size=127 \[ -\frac {e^{i \left (a-\frac {b c}{d}\right )} (c+d x)^m \left (-\frac {i b (c+d x)}{d}\right )^{-m} \Gamma \left (1+m,-\frac {i b (c+d x)}{d}\right )}{2 b}-\frac {e^{-i \left (a-\frac {b c}{d}\right )} (c+d x)^m \left (\frac {i b (c+d x)}{d}\right )^{-m} \Gamma \left (1+m,\frac {i b (c+d x)}{d}\right )}{2 b} \]

[Out]

-1/2*exp(I*(a-b*c/d))*(d*x+c)^m*GAMMA(1+m,-I*b*(d*x+c)/d)/b/((-I*b*(d*x+c)/d)^m)-1/2*(d*x+c)^m*GAMMA(1+m,I*b*(
d*x+c)/d)/b/exp(I*(a-b*c/d))/((I*b*(d*x+c)/d)^m)

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 127, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3389, 2212} \begin {gather*} -\frac {e^{i \left (a-\frac {b c}{d}\right )} (c+d x)^m \left (-\frac {i b (c+d x)}{d}\right )^{-m} \text {Gamma}\left (m+1,-\frac {i b (c+d x)}{d}\right )}{2 b}-\frac {e^{-i \left (a-\frac {b c}{d}\right )} (c+d x)^m \left (\frac {i b (c+d x)}{d}\right )^{-m} \text {Gamma}\left (m+1,\frac {i b (c+d x)}{d}\right )}{2 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c + d*x)^m*Sin[a + b*x],x]

[Out]

-1/2*(E^(I*(a - (b*c)/d))*(c + d*x)^m*Gamma[1 + m, ((-I)*b*(c + d*x))/d])/(b*(((-I)*b*(c + d*x))/d)^m) - ((c +
 d*x)^m*Gamma[1 + m, (I*b*(c + d*x))/d])/(2*b*E^(I*(a - (b*c)/d))*((I*b*(c + d*x))/d)^m)

Rule 2212

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[(-F^(g*(e - c*(f/d))))*((c
+ d*x)^FracPart[m]/(d*((-f)*g*(Log[F]/d))^(IntPart[m] + 1)*((-f)*g*Log[F]*((c + d*x)/d))^FracPart[m]))*Gamma[m
 + 1, ((-f)*g*(Log[F]/d))*(c + d*x)], x] /; FreeQ[{F, c, d, e, f, g, m}, x] &&  !IntegerQ[m]

Rule 3389

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/E^(I*(e + f*x))
, x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]

Rubi steps

\begin {align*} \int (c+d x)^m \sin (a+b x) \, dx &=\frac {1}{2} i \int e^{-i (a+b x)} (c+d x)^m \, dx-\frac {1}{2} i \int e^{i (a+b x)} (c+d x)^m \, dx\\ &=-\frac {e^{i \left (a-\frac {b c}{d}\right )} (c+d x)^m \left (-\frac {i b (c+d x)}{d}\right )^{-m} \Gamma \left (1+m,-\frac {i b (c+d x)}{d}\right )}{2 b}-\frac {e^{-i \left (a-\frac {b c}{d}\right )} (c+d x)^m \left (\frac {i b (c+d x)}{d}\right )^{-m} \Gamma \left (1+m,\frac {i b (c+d x)}{d}\right )}{2 b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.03, size = 121, normalized size = 0.95 \begin {gather*} \frac {e^{-\frac {i (b c+a d)}{d}} (c+d x)^m \left (-e^{2 i a} \left (-\frac {i b (c+d x)}{d}\right )^{-m} \Gamma \left (1+m,-\frac {i b (c+d x)}{d}\right )-e^{\frac {2 i b c}{d}} \left (\frac {i b (c+d x)}{d}\right )^{-m} \Gamma \left (1+m,\frac {i b (c+d x)}{d}\right )\right )}{2 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)^m*Sin[a + b*x],x]

[Out]

((c + d*x)^m*(-((E^((2*I)*a)*Gamma[1 + m, ((-I)*b*(c + d*x))/d])/(((-I)*b*(c + d*x))/d)^m) - (E^(((2*I)*b*c)/d
)*Gamma[1 + m, (I*b*(c + d*x))/d])/((I*b*(c + d*x))/d)^m))/(2*b*E^((I*(b*c + a*d))/d))

________________________________________________________________________________________

Maple [F]
time = 0.02, size = 0, normalized size = 0.00 \[\int \left (d x +c \right )^{m} \sin \left (b x +a \right )\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)^m*sin(b*x+a),x)

[Out]

int((d*x+c)^m*sin(b*x+a),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^m*sin(b*x+a),x, algorithm="maxima")

[Out]

integrate((d*x + c)^m*sin(b*x + a), x)

________________________________________________________________________________________

Fricas [A]
time = 0.10, size = 94, normalized size = 0.74 \begin {gather*} -\frac {e^{\left (-\frac {d m \log \left (\frac {i \, b}{d}\right ) - i \, b c + i \, a d}{d}\right )} \Gamma \left (m + 1, \frac {i \, b d x + i \, b c}{d}\right ) + e^{\left (-\frac {d m \log \left (-\frac {i \, b}{d}\right ) + i \, b c - i \, a d}{d}\right )} \Gamma \left (m + 1, \frac {-i \, b d x - i \, b c}{d}\right )}{2 \, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^m*sin(b*x+a),x, algorithm="fricas")

[Out]

-1/2*(e^(-(d*m*log(I*b/d) - I*b*c + I*a*d)/d)*gamma(m + 1, (I*b*d*x + I*b*c)/d) + e^(-(d*m*log(-I*b/d) + I*b*c
 - I*a*d)/d)*gamma(m + 1, (-I*b*d*x - I*b*c)/d))/b

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (c + d x\right )^{m} \sin {\left (a + b x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)**m*sin(b*x+a),x)

[Out]

Integral((c + d*x)**m*sin(a + b*x), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^m*sin(b*x+a),x, algorithm="giac")

[Out]

integrate((d*x + c)^m*sin(b*x + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \sin \left (a+b\,x\right )\,{\left (c+d\,x\right )}^m \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(a + b*x)*(c + d*x)^m,x)

[Out]

int(sin(a + b*x)*(c + d*x)^m, x)

________________________________________________________________________________________